Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis
نویسندگان
چکیده
BACKGROUND A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. METHODS In this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA=2.8 mm, DB=3.3 mm, and DC=3.8 mm) with depth L=12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L=11 mm and diameter D=4 mm. RESULTS The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ=2.46, 0.51 and 0.49 for the three models, respectively. CONCLUSIONS This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique.Further studies could aim at understanding how different drill shapes can determine the optimal press-fit condition with an equally distributed preload on both the cortical and trabecular structure around the implant.
منابع مشابه
Stress analysis of all-ceramic three-unit dental bridges using finite element method
Stress analysis of all-ceramic three-unit dental bridges using finite element method M.F. Biria *- Dr. F. Farahmand** - Dr. Gh. Eslami Amirabadi*** *- M.S in Biomechanics Engineering Faculty of Mechanics. Sharif Industrial University. ** - Associate professor of Mecanical Engineering Dept. Sharif Industrial University. *** - Assistant professor of Orthodontics Dept. Faculty of Dentistry Shahed...
متن کاملThree Dimensional Finite Element Mesh Generation for Maxillary Second Premolar
The finite element method (FEM) has established itself as a powerful tool in biomechanics. However, developing a finite element three dimensional mesh for irregular geometry object is still a labor intensive task hence limits the usage of the three dimensional analysis for dental structures. This study presented an automatic procedure to generate the three dimensional finite element mesh of a m...
متن کاملStress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis
Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...
متن کاملIdentifying Vulnerable Plaques Using Mri-based Finite Element Analysis
INTRODUCTION Atherosclerotic vascular disease is the most common cause of morbidity and mortality in the world. Plaque rupture has been identified as a critical step in the evolution of arterial plaques 1 , whereas the biomechanics of plaque rupture is still not fully understood 2,3 . To explore the role of biomechanics in the assessment of risk of rupture in carotid atheromatous plaque using h...
متن کاملOn the Displacement-Stress Continuous Finite Elements
For the analysis of composite media, three different compatible and mixed finite element formulations are presented which apriori enforce the continuity of stresses as well as displacements at the element interfaces. The formulations are applied for the analysis of hi-material interfaces in two problems often encountered in the field of orthopaedic biomechanics, that is the fixation analysis in...
متن کامل